Wahrscheinlichkeitsbaum Beispiel Essay

Der Satz von Bayes ist ein mathematischer Satz aus der Wahrscheinlichkeitstheorie, der die Berechnung bedingter Wahrscheinlichkeiten beschreibt. Er ist nach dem englischen Mathematiker Thomas Bayes benannt, der ihn erstmals in einem Spezialfall in der 1763 posthum veröffentlichten Abhandlung An Essay Towards Solving a Problem in the Doctrine of Chances beschrieb. Er wird auch Formel von Bayes oder (als Lehnübersetzung) Bayes-Theorem genannt.

Formel[Bearbeiten | Quelltext bearbeiten]

Für zwei Ereignisse und mit lässt sich die Wahrscheinlichkeit von unter der Bedingung, dass eingetreten ist, durch die Wahrscheinlichkeit von unter der Bedingung, dass eingetreten ist, errechnen:

.

Hierbei ist

die (bedingte) Wahrscheinlichkeit des Ereignisses unter der Bedingung, dass eingetreten ist,
die (bedingte) Wahrscheinlichkeit des Ereignisses unter der Bedingung, dass eingetreten ist,
die A-priori-Wahrscheinlichkeit des Ereignisses und
die A-priori-Wahrscheinlichkeit des Ereignisses .

Bei endlich vielen Ereignissen lautet der Satz von Bayes:

Wenn eine Zerlegung der Ergebnismenge in disjunkte Ereignisse ist, gilt für die A-posteriori-Wahrscheinlichkeit

.

Den letzten Umformungsschritt bezeichnet man auch als Marginalisierung.

Da ein Ereignis und sein Komplement stets eine Zerlegung der Ergebnismenge darstellen, gilt insbesondere

.

Des Weiteren gilt der Satz auch für eine Zerlegung des Grundraumes in abzählbar viele paarweise disjunkte Ereignisse.

Beweis[Bearbeiten | Quelltext bearbeiten]

Der Satz folgt unmittelbar aus der Definition der bedingten Wahrscheinlichkeit:

.

Die Beziehung

ist eine Anwendung des Gesetzes der totalen Wahrscheinlichkeit.

Interpretation[Bearbeiten | Quelltext bearbeiten]

Der Satz von Bayes erlaubt in gewissem Sinn das Umkehren von Schlussfolgerungen: Man geht von einem bekannten Wert aus, ist aber eigentlich an dem Wert interessiert. Beispielsweise ist es von Interesse, wie groß die Wahrscheinlichkeit ist, dass jemand eine bestimmte Krankheit hat, wenn ein dafür entwickelter Schnelltest ein positives Ergebnis zeigt. Aus empirischen Studien kennt man in der Regel die Wahrscheinlichkeit dafür, mit der der Test bei einer von dieser Krankheit befallenen Person zu einem positiven Ergebnis führt. Die gewünschte Umrechnung ist nur dann möglich, wenn man die Prävalenz der Krankheit kennt, das heißt die (absolute) Wahrscheinlichkeit, mit der die betreffende Krankheit in der Gesamtpopulation auftritt (siehe Rechenbeispiel 2).

Für das Verständnis kann ein Entscheidungsbaum oder eine Vierfeldertafel helfen. Das Verfahren ist auch als Rückwärtsinduktion bekannt.

Mitunter begegnet man dem Fehlschluss, direkt von auf schließen zu wollen, ohne die A-priori-Wahrscheinlichkeit zu berücksichtigen, beispielsweise indem angenommen wird, die beiden bedingten Wahrscheinlichkeiten müssten ungefähr gleich groß sein (siehe Prävalenzfehler). Wie der Satz von Bayes zeigt, ist das aber nur dann der Fall, wenn auch und ungefähr gleich groß sind.

Ebenso ist zu beachten, dass bedingte Wahrscheinlichkeiten für sich allein nicht dazu geeignet sind, eine bestimmte Kausalbeziehung nachzuweisen.

Anwendungsgebiete[Bearbeiten | Quelltext bearbeiten]

Rechenbeispiel 1[Bearbeiten | Quelltext bearbeiten]

In den beiden Urnen und befinden sich jeweils zehn Kugeln. In sind sieben rote und drei weiße Kugeln, in eine rote und neun weiße. Es wird nun eine beliebige Kugel aus einer zufällig gewählten Urne gezogen. Anders ausgedrückt: Ob aus Urne oder gezogen wird, ist a priori gleich wahrscheinlich. Das Ergebnis der Ziehung ist: Die Kugel ist rot. Gesucht ist die Wahrscheinlichkeit, dass diese rote Kugel aus Urne stammt.

Es sei: das Ereignis „Die Kugel stammt aus Urne “,
das Ereignis „Die Kugel stammt aus Urne “ und
das Ereignis „Die Kugel ist rot“.

Dann gilt:   (beide Urnen sind a priori gleich wahrscheinlich)

  (in Urne A sind 10 Kugeln, davon 7 rote)

  (in Urne B sind 10 Kugeln, davon 1 rote)

  (totale Wahrscheinlichkeit, eine rote Kugel zu ziehen)

Damit ist  .

Die bedingte Wahrscheinlichkeit, dass die gezogene rote Kugel aus der Urne gezogen wurde, beträgt also .

Das Ergebnis der Bayes-Formel in diesem einfachen Beispiel kann leicht anschaulich eingesehen werden: Da beide Urnen a priori mit der gleichen Wahrscheinlichkeit ausgewählt werden und sich in beiden Urnen gleich viele Kugeln befinden, haben alle Kugeln – und damit auch alle acht roten Kugeln – die gleiche Wahrscheinlichkeit, gezogen zu werden. Wenn man wiederholt eine Kugel aus einer zufälligen Urne zieht und wieder in die richtige Urne zurücklegt, wird man im Durchschnitt in acht von 20 Fällen eine rote und in zwölf von 20 Fällen eine weiße Kugel ziehen (deshalb ist auch die totale Wahrscheinlichkeit, eine rote Kugel zu ziehen, gleich ). Von diesen acht roten Kugeln kommen im Mittel sieben aus Urne und eine aus Urne . Die Wahrscheinlichkeit, dass eine gezogene rote Kugel aus Urne stammt, ist daher gleich .

Rechenbeispiel 2[Bearbeiten | Quelltext bearbeiten]

Eine bestimmte Krankheit tritt mit einer Prävalenz von 20 pro 100 000 Personen auf. Der Sachverhalt , dass ein Mensch diese Krankheit in sich trägt, hat also die Wahrscheinlichkeit .

Ist ein Screening der Gesamtbevölkerung ohne Rücksicht auf Risikofaktoren oder Symptome geeignet, Träger dieser Krankheit zu ermitteln? Es würden dabei weit überwiegend Personen aus dem Komplement von getestet, also Personen, die diese Krankheit nicht in sich tragen: Die Wahrscheinlichkeit, dass eine zu testende Person nicht Träger der Krankheit ist, beträgt .

bezeichne die Tatsache, dass der Test bei einer Person „positiv“ ausgefallen ist, also die Krankheit anzeigt. Es sei bekannt, dass der Test mit 95 % Wahrscheinlichkeit anzeigt (Sensitivität), aber manchmal auch bei Gesunden anspricht, d.h. ein falsch positives Testergebnis liefert, und zwar mit einer Wahrscheinlichkeit von (Spezifität).

Nicht nur für die Eingangsfrage, sondern in jedem Einzelfall , insbesondere vor dem Ergebnis weiterer Untersuchungen, interessiert die positiver prädiktiver Wert genannte bedingte Wahrscheinlichkeit , dass positiv Getestete Träger der Krankheit sind.

Berechnung mit dem Satz von Bayes[Bearbeiten | Quelltext bearbeiten]

.

Berechnung mittels Baumdiagramm[Bearbeiten | Quelltext bearbeiten]

Probleme mit wenigen Klassen und einfachen Verteilungen lassen sich übersichtlich im Baumdiagramm für die Aufteilung der Häufigkeiten darstellen. Geht man von den Häufigkeiten auf relative Häufigkeiten bzw. auf (bedingte) Wahrscheinlichkeiten über, wird aus dem Baumdiagramm ein Ereignisbaum, ein Sonderfall des Entscheidungsbaums.

Den obigen Angaben folgend ergeben sich als absolute Häufigkeit bei 100 000 Personen 20 tatsächlich erkrankte Personen, 99 980 Personen sind gesund. Der Test diagnostiziert bei den 20 kranken Personen in 19 Fällen (95 Prozent Sensitivität) korrekt die Erkrankung. In einem Fall versagt der Test und zeigt die vorliegende Krankheit nicht an (falsch negativ). Bei wahrscheinlich 1000 der 99 980 gesunden Personen zeigt der Test fälschlicherweise eine Erkrankung an. Von den insgesamt 1019 positiv getesteten Personen sind also nur 19 tatsächlich krank (

Illustration des Satzes von Bayes durch Überlagerung der beiden ihm zugrundeliegenden Entscheidungsbäume bzw. Baumdiagramme
Der Wahrscheinlichkeitsbaum illustriert .
Ereignisbaum zum Beispiel

Themen auf dieser Seite

Das Baumdiagramm kann durch eine kleine Erweiterung sehr geschickt zur Berechnung von Wahrscheinlichkeiten von Ereignissen mehrstufiger Zufallsexperimente benutzt werden.

Dazu werden an den Zweigen die jeweiligen Wahrscheinlichkeiten eingetragen, mit denen das zum Zweig gehörige Ereignis des Zufallsexperimentes eintritt. Diese Wahrscheinlichkeiten nennt man kurz Zweigwahrscheinlichkeiten.

Ein Baumdiagramm, das Zweigwahrscheinlichkeiten enthält, nennt man auch kurz Wahrscheinlichkeitsbaum. Üblicherweise gibt man alle Zweigwahrscheinlichkeiten entweder komplett als Brüche oder Dezimalzahlen an.

Mit oder ohne Zurücklegen?

Grundlegend ist aus der Aufgabenstellung zu entnehmen, ob es sich bei dem Zufallsexperiment um ein Experiment mit oder ohne Zurücklegen handelt. Machen wir uns anhand eines Beispiels deutlich, wo der Unterschied zwischen beiden Experimenten liegt.

 

Zufallsexperiment „Mit Zurücklegen“

In einer Urne befinden sich 60 rote Kugeln und 40 blaue Kugeln und wir ziehen zwei Kugeln mit Zurücklegen.

Wie wir bereits wissen können wir hier die Laplace Wahrscheinlichkeit anwenden und erhalten die folgenden Wahrscheinlichkeiten:

   

Erste Ziehung:
Wie man sehen kann hat man im ersten Zug jeweils die Chance eine rote oder eine blaue Kugel zu ziehen. Addiert man die Wahrscheinlichkeiten für beide Ereignisse, so erhält man als Summe eins: .

Zweite Ziehung:
Beim zweiten Zug hat man wieder die gleiche Chance eine rote oder eine blaue Kugel zu ziehen, da man die Kugeln wieder zurücklegt. Dementsprechend ist festzuhalten, dass beim Ziehen mit Zurücklegen bei jedem Zug die gleichen Eintrittswahrscheinlichkeiten vorliegen (Laplace-Wahrscheinlichkeit). Auch hier müssen die einzelnen Ereignisse an jedem Knoten die Summe 1 betragen.

Schau dir dazu das Lernvideo zum Thema Baumdiagramm und Urnenmodell an.

 

Zufallsexperiment „Ohne Zurücklegen“

In einer Urne befinden sich 60 rote Kugeln und 40 blaue Kugeln und wir ziehen zwei Kugeln ohne Zurücklegen.

Wie wir bereits wissen können wir hier die Laplace-Wahrscheinlichkeit anwenden und erhalten die folgenden Wahrscheinlichkeiten:

   

Erste Ziehung:

Im Baumdiagramm sehen wir die Wahrscheinlichkeiten im ersten Zug eine rote oder eine blaue Kugel zu ziehen. Addiert man die Wahrscheinlichkeiten für beide Ereignisse, so erhält man als Summe eins: .

Zweite Ziehung:

Im Gegensatz zum Ziehen mit Zurücklegen ändern sich die Wahrscheinlichkeiten beim Ziehen ohne Zurücklegen im zweiten Zug. Zieht man beispielsweise im ersten Zug eine rote Kugel, so hat man im zweiten Zug eine geringere Wahrscheinlichkeit eine rote Kugel zu ziehen. Warum? Weil sich die Anzahl der günstigen und der möglichen Ereignisse (eine Rote Kugel weniger) um 1 verringert. Es befinden sich also nur noch 59 rote und insgesamt 99 Kugeln in der Urne. Die Wahrscheinlichkeit im zweiten Zug eine rote Kugel zu ziehen, ändert sich von 60/100 auf 59/99.

Merke: Bei Zufallsexperimenten ohne Zurücklegen ist es sinnvoller Brüche statt Dezimalzahlen für die Wahrscheinlichkeiten zu verwenden.

Daniel erklärt dir nochmal das Urnenmodell mit dem Fall „Ziehen ohne zurücklegen“.

 

Wahrscheinlichkeit mit Pfadregel

Um die Wahrscheinlichkeit eines Ergebnisses zu erhalten, multipliziert man die Wahrscheinlichkeit entlang des Pfades, der dieses Ergebnis beschreibt. Wichtig: Die Pfadregel gilt bei jedem mehrstufigen Zufallsexperiment, gleichgültig, ob z.B. mit oder ohne Zurücklegen.

Zur Ermittlung einer Wahrscheinlichkeit

  • zeichnet man ein Baumdiagramm und
  • wendet die Pfadregel an!

Ist die Wahrscheinlichkeit eines Ereignisses gesucht,

  • genügt es, nur die Pfade zu zeichnen, die zu diesem Ereignis gehören,
  • die Pfadregel anzuwenden und
  • die Wahrscheinlichkeiten dieser Pfade zu addieren (Summenregel).

Unterscheide folgende Regeln:

  1. Pfadregel (Produktregel):Die Wahrscheinlichkeiten eines einzelnen Ergebnisses ist das Produkt der Wahrscheinlichkeiten entlang des Pfades, der zu diesem Ergebnis führt.
  2. Pfadregel (Summenregel):Die Wahrscheinlichkeit eines Ereignisses ist die Summe der Wahrscheinlichkeiten der Pfade, die zu diesem Ereignis gehören.

Machen wir uns die Pfadregeln anhand des bekannten Beispiels klar:

In einer Urne befinden sich 60 rote Kugeln und 40 blaue Kugeln. Wir ziehen zwei Kugeln mit Zurücklegen.

Es liegt somit ein Laplace-Experiment vor, bei dem die Wahrscheinlichkeiten für ein Ereigniss immer gleich sind. Die Wahrscheinlichkeiten sowie das Baumdiagramm lauten:

   

1. Gesucht sei die Wahrscheinlichkeit für zwei rote Kugeln.

Für die gesuchte Wahrscheinlichkeit, müssen wir die Wahrscheinlichkeiten mit der Pfadregel entlang des Pfades multiplizieren. Die Wahrscheinlichkeit zwei rote Kugeln hintereinander zu ziehen beträgt:

   

2. Gesucht sei die Wahrscheinlichkeit für eine blaue und eine rote Kugel.

Für die gesuchte Wahrscheinlichkeit müssen wir die Wahrscheinlichkeiten für eine rote und blaue sowie für eine blaue und rote Kugel mit der Pfadregel bestimmen. Warum? Weil die Reihenfolge der Ziehung egal ist. Es geht darum insgesamt eine blaue und eine rote Kugel zu ziehen.

Die gesamte Wahrscheinlichkeit, eine rote und blaue Kugel zu ziehen, wird dann mit der Summenregel bestimmt. Die Wahrscheinlichkeit eine rote und eine blaue Kugel zu ziehen beträgt:

   

Vertiefe dein Wissen und schau das Lernvideo zur 1. und 2. Pfadregel

Urnenmodelle und Pfadregeln in der Stochastik, Wahrscheinlichkeit | Mathe by Daniel Jung

Urnenmodell Ziehen ohne Zurücklegen, Beispiel, Kugeln, Stochastik | Mathe by Daniel Jung

1. und 2. Pfadregel, Gegenwahrscheinlichkeit, Stochastik, Wahrscheinlichkeit, Baumdiagramm

One thought on “Wahrscheinlichkeitsbaum Beispiel Essay

Leave a Reply

Your email address will not be published. Required fields are marked *